
Space-optimal Heavy Hitters with
Strong Error Bounds

RADU BERINDE and PIOTR INDYK
MIT

and
GRAHAM CORMODE
AT&T Labs–Research

and
MARTIN J. STRAUSS
University of Michigan

The problem of finding heavy hitters and approximating the frequencies of items is at the heart
of many problems in data stream analysis. It has been observed that several proposed solutions
to this problem can outperform their worst-case guarantees on real data. This leads to the
question of whether some stronger bounds can be guaranteed. We answer this in the positive by
showing that a class of “counter-based algorithms” (including the popular and very space-efficient
FREQUENT and SPACESAVING algorithms) provide much stronger approximation guarantees than
previously known. Specifically, we show that errors in the approximation of individual elements
do not depend on the frequencies of the most frequent elements, but only on the frequency of the
remaining “tail.” This shows that counter-based methods are the most space-efficient (in fact,
space-optimal) algorithms having this strong error bound.

This tail guarantee allows these algorithms to solve the “sparse recovery” problem. Here, the
goal is to recover a faithful representation of the vector of frequencies, f . We prove that using
space O(k), the algorithms construct an approximation f∗ to the frequency vector f so that the L1

error ‖f − f∗‖1 is close to the best possible error minf ′ ‖f ′− f‖1, where f ′ ranges over all vectors
with at most k non-zero entries. This improves the previously best known space bound of about
O(k log n) for streams without element deletions (where n is the size of the domain from which
stream elements are drawn). Other consequences of the tail guarantees are results for skewed
(Zipfian) data, and guarantees for accuracy of merging multiple summarized streams.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Data mining;
C.2.3 [Computer-Communication Networks]: Network Operations—Network monitoring; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: frequency estimation, heavy hitters, streaming algorithms

1. INTRODUCTION

In many modern applications, very large quantities of data are generated at very high rates.
This data is often too large to store and index in its complete form. Instead, it is often
preferable to process this data in a streaming fashion. The streaming paradigm is to take a
single pass over the huge stream of updates, and to store only a compact summary. From
this summary, the goal is to discover properties of the input, and give strong guarantees on

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY, Pages 1–28.

2 · Berinde, Cormode, Indyk, Strauss

the quality of the resulting answers. The study of streaming algorithms is hence concerned
with designing methods to build such summaries which are suited for approximating cer-
tain properties of the input.

The streaming approach is relevant for many applications:

—In large scale data processing and data warehousing, streams of updates arise as large
quantities of data are loaded into the system. Here, compact summaries can quickly
give approximate answers to ad hoc queries much faster than retrieving the full data and
computing the exact answer [Hershberger et al. 2005; Beyer and Ramakrishnan 1999;
Fang et al. 1998; Han et al. 2001].

—In large ISP networks, the packets in transit across the network are never stored centrally
by the service provider: the gigabit speeds of transmission mean that storing even the
data for a short period requires a vast amount of storage. Instead, it is desirable to track
statistics about the network usage, popular destinations, patterns of traffic and so on,
based on updating a very compact summary as each data packet is seen: this gives us
exactly the streaming model [Arasu et al. 2003; Cormode et al. 2003; Demaine et al.
2002; Estan and Varghese 2001].

—Within distributed sensor networks, constraints on the memory of each sensor also mean
that it is impractical to retain the full set of readings made by each sensor. Instead,
various statistics and summaries must be kept that can be updated as new readings are
made. When queries are posed to the network, these can either be answered by sending
the query to each sensor, and having the sensor return a partial answer; or by having
each sensor periodically send its summary to a central location. In the latter case, this
motivates the additional requirement that summaries can be combined together to give a
summary of the total data observed [Bonnet et al. 2001; Shrivastava et al. 2004].

—Lastly, the compressed sensing paradigm that has emerged over the past few years is
based on making a small number of measurements of a very high-dimensional signal,
so that the results of these measurements allow an approximate version of the signal
to be reconstructed. There are two ways in which streaming algorithms have impact
on compressed sensing: firstly, many existing streaming algorithms have been adapted
to provide measurement schemes in the compressed sensing setting; and secondly, new
streaming algorithms are needed to solve streaming versions of the compressed sensing
problem, where information about the signal arrives at the sensor in a streaming fashion
[Gilbert et al. 2007; Candès et al. 2006].

For a broader overview of the motivating scenarios, problems, and algorithms in the
streaming area, we refer the reader to the tutorials, surveys, and classes on the topic [Indyk
2007; Muthukrishnan 2005; Garofalakis et al. 2002].

The Heavy Hitters Problem. Our focus in this paper is on one of the quintessential prob-
lems in data stream algorithms, the so-called “heavy hitters” or “frequent items” problem.
The problem can be stated quite simply: given a stream of items (possibly with weights
attached), find those items with the greatest total weight. This is an intuitive problem, that
applies to many natural questions: given a stream of search engine queries, which are the
most frequently occurring terms? Given a stream of supermarket transactions and prices,
which items have the highest total dollar sales? Over the past few decades, there have been
a very large number of papers which address exactly this question, or variations thereof.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 3

For more background and history, see the recent survey of Cormode and Hadjieleftheriou
[2008].

Beyond the direct utility of finding the heavy hitters, it turns out that this simple question
is a core subproblem of many more complex computations over data streams. For example:

—In methods for estimating the entropy of a sequence, to get an accurate answer when the
entropy is low, it is necessary to determine the (approximate) empirical probability of
the most frequent item(s), and consider this separately to the entropy of the remaining
stream [Chakrabarti et al. 2007; Ganguly and Lakshminath 2006]. This is accomplished
by finding the heavy hitters in the stream, in parallel to computing other statistics.

—In clustering geometric data that is presented as a stream of points, grids at different
granularities are imposed over the data, so that the cost of a proposed clustering can
be estimated based on summing the counts of all points covered by clusters of a given
diameter [Indyk 2004]. The total number of points covered is estimated by using heavy
hitter algorithms to estimate the weight of the cells covered in the grid representation.

—In establishing integrity constraints that hold over data that has been loaded into a data
warehouse, it is necessary to find particular (antecedent, consequent) pairs that have
high support in the data [Cormode et al. 2009]. The support of these pairs, as well as the
support of just the antecedents, is found using heavy hitter algorithms.

Therefore, it is of high importance to design efficient algorithms for this problem, and
understand the performance of existing ones.

Frequency Estimation. The heavy hitters problem can be formalized as one of estimating
item frequencies. In this problem we are given a stream of N elements from some universe;
the goal is to compute, for each universe element i, an estimator f̂i that approximates fi,
the number of times the element i occurs in the data stream (or the sum of associated
weights in a weighted version). Since the algorithms will be space limited, and will keep
detailed information about only a small number of items, for many items we may have
f̂i = 0. The goal of such estimators f̂i is to provide a succinct representation of the data
stream, with a controllable trade-off between description size and approximation error.

An algorithm for frequency estimation is characterized by two related parameters: the
space1 and the bounds on the error in estimating the fis. The error bounds are typically
of the “additive” form, namely we have |fi − f̂i| ≤ εB, for a B (as in “bound”) that is a
function of the stream. The bound B is equal either to the size of the whole stream - equiv-
alently, to the quantity F1 where Fp =

∑
i(fi)p, or to the size of the residual tail of the

stream, given by F
res(k)
1 , the sum of the frequencies of all elements other than the k most

frequent ones (heavy hitters). The residual guarantee is more desirable, since it is always
at least as good as the F1 bound. More strongly, since streams from real applications often
obey a very skewed frequency distribution, with the heavy hitters constituting the bulk of
the stream, a residual guarantee can be asymptotically better. In particular, in the extreme
case when there are only k distinct elements present in the stream, the residual error bound
is zero, i.e. the frequency estimation is exact.

Prior Solutions. Algorithms for the heavy hitters problem have fallen into two main
classes: (deterministic) “counter” algorithms and (randomized) “sketch” algorithms. Ta-

1We measure space in memory words, each consisting of a logarithmic number of bits.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

4 · Berinde, Cormode, Indyk, Strauss

Table I. Previously known bounds of frequency estimation algorithms.
Algorithm Type Space Error bound

FREQUENT [Demaine et al. 2002; Misra
and Gries 1982; Karp et al. 2003]

Counter O(1/ε) |fi − f̂i| ≤ εF1

FREQUENT [Bose et al. 2003] Counter O(1/ε) |fi − f̂i| ≤ εF
res(1)
1

LOSSYCOUNTING [Manku and Mot-
wani 2002]

Counter O(log(εF1)/ε) |fi − f̂i| ≤ εF1

SPACESAVING [Metwally et al. 2005] Counter O(1/ε) |fi − f̂i| ≤ εF1

Count-Min [Cormode and Muthukrish-
nan 2005]

Sketch O((k/ε) log n) |fi − f̂i| ≤ ε/k · F res(k)
1

Count-Sketch [Charikar et al. 2002] Sketch O((k/ε) log n) (fi − f̂i)
2 ≤ ε/k · F res(k)

2

Presented result Counter O(k/ε) |fi − f̂i| ≤ ε/k · F res(k)
1

F1 is the sum of all frequencies; F
res(k)
1 is the sum of all but the top k frequencies; F

res(k)
2 is the

sum of the squares of all but the top k frequencies; n is the size of the domain from which the stream
elements are drawn.

ble I summarizes the space and error bounds of some of the main examples of such algo-
rithms. As is evident from the table, the bounds for the counter and sketching algorithms
are incomparable: counter algorithms use less space, but have worse error guarantees than
sketching algorithms. The sketching algorithms are able to give so-called “tail guaran-
tees”, which depend on F

res(k)
1 , the frequencies of the items in the tail of the frequency

distribution, and not on the k largest frequencies in the head of the distribution. These tail
guarantees can often be significantly stronger than guarantees that depend on the whole of
the frequency distribution, as we explain in the next section.

In practice, however, the actual performance of counter-based algorithms has been ob-
served to be appreciably better than of the sketch-based ones, given the same amount of
space [Cormode and Hadjieleftheriou 2008]. The reason for this disparity has not previ-
ously been well understood or explained. This has led users to apply very conservative
bounds in order to provide the desired guarantees; it has also pushed users towards sketch
algorithms over counter algorithms since the latter are not perceived to offer the same
types of guarantee as the former (for example, [Cormode et al. 2009] and [Ganguly and
Lakshminath 2006] adopt Count-Min and Count-Sketches for estimations which require
tail guarantees to provide an overall approximation bound).

1.1 Our Contributions.

In this paper we show that the good empirical performance of counter-based algorithms
is not an accident: they actually do satisfy a much stronger error bound than previously
thought. Specifically, in Section 3:

—We identify a general class of Heavy-Tolerant Counter algorithms (HTC), that contains
the most popular FREQUENT and SPACESAVING algorithms. The class captures the
essential properties of the algorithms and abstracts away from the specific mechanics of
the procedures.

—We show that any HTC algorithm that has an εF1 error guarantee in fact satisfies the
stronger residual guarantee.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 5

We conclude that FREQUENT and SPACESAVING offer the residual bound on error,
while using less space than sketching algorithms. Moreover, counter algorithms have small
constants of proportionality hidden in their asymptotic cost compared to the much larger
logarithmic factors of sketch algorithms, making these space savings very considerable in
practice (tight bounds for the two specific algorithms are shown in Section 4). We also
establish through a lower bound that the space usage of these algorithms is within a small
constant factor of the space required by any counter algorithm that offers the residual bound
on error.

The new bounds have several consequences beyond the immediate practical ramifica-
tions. First, we show that they provide better bounds for the sparse recovery problem, a
streaming analog of Compressed Sensing [Donoho 2006; Candès et al. 2006; Gilbert et al.
2007; Rice DSP Group]. This problem is to find the best representation f∗ of the fre-
quency distribution, so that f∗ has only k non-zero entries. Such a representation captures
exact stream statistics for all but k stream elements. In Section 5 we show that using a
counter algorithm to produce the k largest estimated frequencies f̂i yields a good solution
to this problem. Formally, let S be the set of the k largest entries in f̂ , generated by a
counter algorithm with O(k/ε) counters. Let f∗ be an n-dimensional vector such that f∗i
is equal to f̂i if i ∈ S and f∗i = 0 otherwise. Then we show that, under the Lp norm, for
any p ≥ 1, we have

‖f − f∗‖p ≤
εF

res(k)
1

k1−1/p
+ (F res(k)

p)1/p.

This is the best known result for this problem in a streaming setting; note that the error
is always at least (F res(k)

p)1/p. The best known sketching algorithms achieve this bound
using Ω(k log n

k) space (see [Berinde et al. 2008; Berinde et al. 2008; Indyk and Ruzic
2008]); in contrast, our approach yields a space bound of O(k). By extracting all m
approximated values from a counter algorithm (as opposed to just top k), we are able to
show another result. Specifically, by modifying the algorithms to ensure that they always
provide an underestimate of the frequencies, we show that the resulting reconstruction has
Lp error (1 + ε)(ε/k)1−1/pF

res(k)
1 for any p ≥ 1.

As noted above, many common frequency distributions are naturally skewed. In Section
6 we show that, if the frequencies follow a Zipfian distribution with parameter α > 1, then
the same tail guarantee follows using only O(ε−1/α) space. A set of experiments reported
in Section 7 over a mixture of real and synthetic data shows that indeed these bounds are
quite tight in practice. Lastly, we also discuss extensions to the cases when streams can
include arbitrary weights for each occurrence of an item; and when multiple streams are
summarized and need to be merged together into a single summary. We show how the
algorithms considered can be generalized to handle both of these situations in Section 8.

1.2 Related Work

There is a large body of algorithms proposed in the literature for heavy hitters problems and
their variants; see [Cormode and Hadjieleftheriou 2008] for a survey. Most of them can
be classified as either counter-based or sketch-based. The first counter algorithm is due
to Misra and Gries [1982], which we refer to as FREQUENT. Several subsequent works
discussed efficient implementation and improved guarantees for this algorithm [Demaine
et al. 2002; Bose et al. 2003]. In particular, Bose et al. [2003] showed that it offers an
F

res(1)
1 guarantee. Our main result is to improve this to F

res(k)
1 , for a broader class of

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

6 · Berinde, Cormode, Indyk, Strauss

algorithms.
A second counter algorithm is the LOSSYCOUNTING algorithm of Manku and Motwani

[2002]. This has been shown to require O(1/ε) counters over randomly ordered streams
to give an εF1 guarantee, but there are adversarial order streams for which it requires
O(1/ε log εn) [Manku and Motwani 2002]. Our results hold over all possible stream or-
derings.

The most recent counter solution is the SPACESAVING algorithm due to Metwally et
al. [2005]. The algorithm is shown to offer an F1 guarantee, and also analyzed in the
presence of data with Zipfian frequency distribution. Here, we show an F

res(k)
1 bound,

and demonstrate similar bounds for Zipfian data for a larger class of counter algorithms.
We provide uniform definitions of both FREQUENT and SPACESAVING in the next Section.

Sketch algorithms are based on linear projections of the frequency vector onto a smaller
sketch vector, using compact hash functions to define the projection. Guarantees in terms
of F

res(k)
1 or F

res(k)
2 follow by arguing that the items with the k largest frequencies are

unlikely to (always) collide under the random choice of the hash functions, and so these
items can effectively be “removed” from consideration when bounding the estimation er-
ror. Because of this random element, sketches are analyzed probabilistically, and have a
probability of failure that is bounded by 1/nc for a constant c (n is the size of the domain
from which the stream elements are drawn). The Count-Sketch requires O((k/ε) log n)
counters to give guarantees on the sum of squared errors in terms of F

res(k)
2 [Charikar

et al. 2002]; the Count-Min sketch uses O((k/ε) log n) counters to give guarantees on the
absolute error in terms of F

res(k)
1 [Cormode and Muthukrishnan 2005]. These two guar-

antees are incomparable in general, varying based on the distribution of frequencies. A
key distinction of sketch algorithms is that they allow both positive and negative updates
(where negative updates can correspond to deletions, in a transactional setting, or simply
arbitrary signal values, in a signal processing environment). This, along with the fact that
they are linear transforms, means that they can be used to solve problems such as designing
measurements for compressed sensing systems [Gilbert et al. 2007; Candès et al. 2006].
So, although our results show that counter algorithms are strictly preferable to sketches
when both are applicable, there are problems that are solved by sketches that cannot be
solved using counter algorithms.

We summarize the main properties of these algorithms, along with the corresponding
results based on our analysis, in Table I.

This paper represents an extended version of [Berinde et al. 2009]; it differs in the fol-
lowing ways:

—This version has extended introductory material, placing the results in context within the
broader area of data stream algorithms, and giving more detailed examples of particular
problems which can benefit from the improved guarantees.

—We provide an experimental study on a mixture of real and synthetic data, to show
exactly how the tighter bounds are realized in practice (Section 7).

—We present full details of the extensions of counter algorithms to streams with arbitrary
non-negative weights.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 7

Algorithm 1: FREQUENT(m)
T ← ∅;
foreach i do

if i ∈ T then
ci ← ci + 1;

else if |T | < m then
T ← T ∪ {i};
ci ← 1;

else forall j ∈ T do
cj ← cj − 1;
if cj = 0 then

T ← T\{j};

Algorithm 2: SPACESAVING(m)
T ← ∅;
foreach i do

if i ∈ T then
ci ← ci + 1;

else if |T | < m then
T ← T ∪ {i};
ci ← 1;

else
j ← arg minj∈T cj ;
ci ← cj + 1;
T ← T ∪ {i}\{j};

Fig. 1. Pseudocode for FREQUENT and SPACESAVING algorithms

2. DEFINITIONS AND LOWER BOUNDS

We introduce the notation used throughout this paper, define the tail-guarantees more pre-
cisely and provide bounds on the best possible results that can be achieved for algorithms
which offer such guarantees.

2.1 Counter-based algorithms

We consider a class of “counter-based” algorithms which maintain at most m counters.
These m counters correspond to a “frequent” set of elements occurring in the input stream.
The input stream contains elements, which we assume without loss of generality to be
integers between 1 and n (in fact, the algorithms considered here can accept items drawn
from arbitrary universes, such as strings; our restriction to bounded integer identifiers is
solely for clarity of notation). We denote a stream of size N by u1, u2, . . . uN . We use
ux...y as a shorthand for the partial stream ux, ux+1, . . . , uy .

We denote frequencies of elements by an n-dimensional vector f . For ease of notation,
we assume without loss of generality that elements are indexed in order of decreasing
frequency, so that f1 ≥ f2 ≥ . . . ≥ fn. When the stream is not understood from context,
we specify it explicitly, e.g. f(ux...y) is the frequency vector for the partial stream ux...y .
We denote the sum of the frequencies by F1; we denote the sum of frequencies except
the k largest by F

res(k)
1 , and we generalize the definition to sums of the pth power of the

frequencies:

F res(k)
p =

n∑
i=k+1

fp
i , Fp = F res(0)

p

The algorithms considered in this paper can be thought of as adhering to the following
form. The state of an algorithm is represented by an n-dimensional vector of counters
c. The vector c has at most m non-zero elements. We denote the “frequent” set by T =
{i | ci 6= 0}, since only this set needs to be explicitly stored. The counter value of an
element is an approximation for its frequency; the error vector of the approximation is
denoted by δ, with δi = |fi − ci|.

We demonstrate our results with reference to two known counter algorithms: FRE-
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

8 · Berinde, Cormode, Indyk, Strauss

QUENT and SPACESAVING. Although similar, the two algorithms differ in the analysis
and their behavior in practice. Both maintain their frequent set T , and process a stream of
updates. Given a new item i in the stream which is stored in T , both simply increase the
corresponding counter ci; or, if i /∈ T and |T | < m, then i is stored with a count of 1.
The algorithms differ when an unstored item is seen and |T | = m: FREQUENT decrements
all stored (by definition, non-zero) counters by 1, and (implicitly) throws out any counters
with zero count; SPACESAVING finds an item j with smallest non-zero count cj and as-
signs ci ← cj +1, followed by cj ← 0, so in effect i replaces j in T . Pseudocode for these
algorithms is presented in Figure 1.

These algorithms are known to provide a “heavy hitter” guarantee on the approximation
errors of the counters:

Definition 1. An m-counter algorithm provides a heavy hitter guarantee with constant
A > 0 if, for any stream,

δi ≤
⌊
A

F1

m

⌋
∀i

More precisely, they both provide this guarantee with constant A = 1. Our result is that
they also satisfy the following stronger guarantee:

Definition 2. An m-counter algorithm provides a k-tail guarantee with constants (A,B),
with A,B > 0 if for any stream

δi ≤

⌊
A

F
res(k)
1

m−Bk

⌋
∀i

Note that the heavy hitter guarantee is equivalent to the 0-tail guarantee. Our general
proof (which can be applied to a broad class of algorithms) yields a k-tail guarantee with
constants A = 1, B = 2 for both algorithms (for any k ≤ m/2). However, by considering
particular features of FREQUENT and SPACESAVING, we prove a k-tail guarantee with
constants A = B = 1 for any k < m following appropriate analysis.

2.2 Lower Bound.

We next demonstrate a lower bound on any deterministic counter-based algorithm that

guarantees to provides an error bound of F
res(k)
1
m−k .

THEOREM 1. For any deterministic counter algorithm with m counters, for any k, 1 ≤
k ≤ m, there exists some stream in which the estimation error of an element is at least
F

res(k)
1
2m

PROOF. The proof is similar to that of Theorem 2 in [Bose et al. 2003]. For some integer
X , consider two streams A and B. The streams share the same prefix of size X(m + k),
where elements a1 . . . am+k occur X times each. After the counter algorithm runs on this
first part of each stream, only m elements can have non-zero counters. Assume without
loss of generality that the other k elements are a1 . . . ak.

Then stream A continues with elements a1 . . . ak, while stream B continues with k other
elements z1 . . . zk distinct from a1 . . . am+k. Both streams thus have total size X(m+k)+
k.

For both streams, after processing the prefix of size X(m + k), the algorithm has no
record of any of the elements in the remaining parts of either of the streams. So the two
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 9

remaining parts look identical to the algorithm and will yield the same estimates. Thus,
for 1 ≤ i ≤ k, cai(A) = czi(B). But fai(A) = X + 1 while fzi(B) = 1. The counter
error for one of the two streams must be at least X/2. Note that F

res(k)
1 (A) = Xm and

F
res(k)
1 (B) = Xm + k; then the error is at least

X

2
≥ F

res(k)
1

2m + 2k/X

As X →∞, this approaches our desired bound.

Thus an algorithm that provides an error bound of F
res(k)
1
m−k must use at least (m − k)/2

counters. Thus the number of counters FREQUENT and SPACESAVING use is within a
small factor (3 for k ≤ m/3) of the best possible. As such, our subsequent results show
that these algorithms are asymptotically optimal for this problem.

3. RESIDUAL ERROR BOUND

In this section we state and prove our main result on the error bound for a general class of
heavy-tolerant counter algorithms. We begin by formally defining this class.

Definition 3. A value i is x-prefix guaranteed for the stream u1...s if after the first x < s
elements of the stream have been processed, i will stay in T even if some elements are
removed from the remaining stream (including occurrences of i). Formally, the value i is
x-prefix guaranteed if 0 ≤ x < s and ci(u1...xv1...t) > 0 for all subsequences v1...t of
u(x+1)...s, 0 ≤ t ≤ s− x.

Note that if i is x-prefix guaranteed, then i is also y-prefix guaranteed for all y > x.

Definition 4. A counter algorithm is heavy-tolerant if extra occurrences of guaranteed
elements do not increase the estimation error. Formally, an algorithm is heavy-tolerant if
for any stream u1...s, given any x, 1 ≤ x < s, for which element i = ux is (x−1)-prefix
guaranteed, it holds that

δj(u1...s) ≤ δj(u1...(x−1)u(x+1)...s) ∀j

3.1 Proof of Heavy Tolerance

First, we demonstrate that heavy tolerance is a reasonable property by proving that both
the two example counter algorithms obey it. Intuitively, this property should hold because
occurrences of an element already in the frequent set only affect the counter value of that
element; and, as long as the element never leaves the frequent set, the value of its counter
does not affect the algorithm’s other choices.

THEOREM 2. Algorithms FREQUENT and SPACESAVING are heavy-tolerant.

PROOF. Denote v1...t = u(x+1)...(x+t), with t ≤ s− x. We prove by induction on t that
for both algorithms

c(u1...xv1...t) = c(u1...(x−1)v1...t) + ei

where i = ux and ei is the i-th row of In, the n× n identity matrix; this implies that

δ(u1...xv1...t) = δ(u1...(x−1)v1...t)
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

10 · Berinde, Cormode, Indyk, Strauss

Base case at t = 0: By the hypothesis: ci(u1...(x−1)) 6= 0, hence when element ux = i ar-
rives after processing u1...x, both FREQUENT and SPACESAVING just increase i’s counter:

c(u1...x) = c(u1...(x−1)) + ei

Induction step for t > 0: We are given that

c(u1...xv1...(t−1)) = c(u1...(x−1)v1...(t−1)) + ei

Note that since i is (x−1)-prefix guaranteed, these vectors have the same support.
Case 1: cvt(u1...xv1...(t−1)) > 0. Hence
cvt(u1...(x−1)v1...(t−1)) > 0. For both streams, vt’s counter just gets incremented and thus

c(u1...xv1...t) = c(u1...xv1...(t−1)) + evt

= c(u1...(x−1)v1...(t−1)) + evt + ei

= c(u1...(x−1)v1...t) + ei

Case 2: cvt
(u1...xv1...(t−1)) = 0. Note that vt 6= i since i is x-prefix guaranteed and

cvt(u1...(x−1)v1...(t−1)) = 0. By the induction hypothesis, both counter vectors have the
same support (set of non-zero entries). If the support is less than m, then the algorithm adds
evk

to the counters, and the analysis follows Case 1 above. Otherwise, the two algorithms
differ:

—FREQUENT algorithm: In this case all non-zero counters will be decremented. Since
both counter vectors have the same support, they will be decremented by the same m-
sparse binary vector γ = χ(T) =

∑
j:cj 6=0 ej .

—SPACESAVING algorithm: The minimum non-zero counter is set to zero. To avoid ambi-
guity, we specify that SPACESAVING will pick the counter cj with the smallest identifier
j if there are multiple counters with equal smallest non-zero value. Let

j = argmin
j∈T (u1...xv1...(t−1))

cj(u1...xv1...(t−1))

and

j′ = argmin
j′∈T (u1...(x−1)v1...(t−1))

cj′(u1...(x−1)v1...(t−1))

Since i is x-prefix guaranteed, its counter can never become zero, hence j 6= i, j′ 6= i.
Since

ci′(u1...xv1...(t−1)) = ci′(u1...(x−1)v1...(t−1))

for all i′ 6= i, it follows that j = j′ and

cj(u1...xv1...(t−1)) = cj′(u1...(x−1)v1...(t−1)) = M.

Hence both streams result in updating the counters by subtracting the same difference
vector γ = Mej − (M + 1)evt

Thus each algorithm computes the same difference vector γ irrespective of which stream
it is applied to, and updates the counters:

c(u1...xv1...t) = c(u1...xv1...(t−1))− γ

= c(u1...(x−1)v1...(t−1)) + ei − γ

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 11

= c(u1...(x−1)v1...t) + ei

3.2 Proof of k-tail guarantee

Next, we show that any algorithm which is heavy-tolerant must therefore provide a k-tail
guarantee. We first define an operation to reduce a stream to a simpler one, and build a
sequence of lemmas which bound the error on a complex stream with that on a simpler
one. Let Remove(u1...s, i) be the subsequence of u1...s with all occurrences of value i
removed, i.e.

Remove(u1...s, i) =

 empty sequence if s = 0
(u1,Remove(u2...s, i)) if u1 6= i

Remove(u2...s, i) if u1 = i

LEMMA 3. If i is x-prefix guaranteed and the algorithm is heavy-tolerant, then

δj(u1...s) ≤ δj(u1...xv1...t) ∀j

where v1...t = Remove(u(x+1)...s, i), with 0 ≤ t ≤ s− x.

PROOF. Let x1, x2, . . . , xq be the positions of occurrences of i in u(x+1)...s, with x <
x1 < x2 < . . . < xq. We apply the heavy-tolerant definition for each occurrence; for all j:

δj(u1...s) ≤ δj(u1...(x1−1)u(x1+1)...s)
≤ δj(u1...(x1−1)u(x1+1)...(x2−1)u(x2+1)...s)
≤ . . .

≤ δj(u1...xv1...t)

Note in particular that δi(u1...p), the error in estimating the frequency of i in the original
stream, is identical to δi(u1...xv1...q), the error of i on the derived stream, since i is x-prefix
guaranteed.

Definition 5. An error bound for an algorithm is a function ∆ : Nn → R+ such that
for any stream u1...s

δi(u1...s) ≤ b∆(f(u1...s))c ∀i
In addition, we require that ∆, the absolute error, must be “increasing” in the sense that
for any two frequency vectors f ′ and f ′′ such that f ′i ≤ f ′′i for all i, it holds that ∆(f ′) ≤
∆(f ′′).

LEMMA 4. Let ∆ be an error bound for a heavy-tolerant algorithm that provides a
heavy hitter guarantee with constant A. Then the following function is also an error bound
for the algorithm, for any k, 1 ≤ k < m/A:

∆′(f) = A
k∆(f) + k + F

res(k)
1

m

PROOF. Let u1...s be any stream. Let D = 1+ b∆(f(u1...s))c. We assume without loss
of generality that the elements are indexed in order of increasing frequency.

Let k′ = max {i | 1 ≤ i ≤ k and fi(u1...s) > D}. Recall that by convention we index
the elements by decreasing frequencies (f1 ≥ f2 ≥ . . .). If the there is no element i such
that fi(u1...s) > D the argument below follows trivially (e.g. set k′ = 0).

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

12 · Berinde, Cormode, Indyk, Strauss

For each i ≤ k′ let xi be the position of the D-th occurrence of i in the stream. We
claim that any i ≤ k′ is xi-prefix guaranteed: let v1...t be any subsequence of u(xi+1)...s;
it holds for all j that

δj(u1...xiv1...t) ≤ b∆(f(u1...xiv1...t))c < D

and so cj(u1...xi
v1...t) ≥ fj(u1...xi

v1...t)− δj(u1...xi
v1...t)

> D −D = 0.

Let i1, i2, . . . ik′ be the permutation of 1 . . . k′ so that xi1 > xi2 > . . . > xik′ . We can
apply Lemma 3 for i1 which is xi1-prefix guaranteed; for all j

δj(u1...s) ≤ δj(u1...xi1
v1...sv

)

where v1...sv
= Remove(u(xi1+1)...s, i1).

Since xi2 < xi1 , i2 is xi2-prefix guaranteed for the new stream u1...xi1
v1...sv and we

apply Lemma 3 again:

δj(u1...s) ≤ δj(u1...xi1
v1...sv) ≤ δj(u1...xi2

w1...sw) ∀j

where w1...sw
= Remove(u(xi2+1)...xi1

v1...sv , i2). Since the xij values are decreasing,
we can continue this argument for i = 3, 4, . . . , k′. We obtain the following inequality for
the final stream z1...sz

δj(u1...s) ≤ δj(z1...sz) ∀j

where z1...sz
is the stream u1...s with all “extra” occurrences of elements 1 to k′ removed

(“extra” means after the first D occurrences). Thus

‖f(z1...sz)‖1 = k′D +
n∑

i=k′+1

fi(u1...s)

Either k′ = k, or k′ < k and fi(u1...s) ≤ D for all k′ < i ≤ k; in both cases we can
replace k′ with k:

‖f(z1...sz)‖1 ≤ kD +
n∑

i=k+1

fi(u1...s)

We now apply the heavy hitter guarantee for this stream; for all j:

δj(u1...s) ≤ δj(z1...sz)

≤
⌊
A

kD +
∑n

i=k+1 fi(u1...s)
m

⌋
≤

⌊
A

k∆(u1...s) + k + F
res(k)
1

m

⌋

We can now prove our main Theorem on the accuracy of counter-based algorithms.

THEOREM 5. If a heavy-tolerant algorithm provides a heavy hitter guarantee with con-
stant A, it also provides a k-tail guarantee with constants (A, 2A), for any k, 1 ≤ k <
m/2A.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 13

PROOF. We start with the initial error bound given by the heavy hitter guarantee ∆(f) =
A‖f‖1

m and apply Lemma 4 to obtain another error bound ∆′. We can continue iteratively
applying Lemma 4 in this way. Either we will eventually obtain a new bound which is
worse than the previous one, in which case this process halts with the previous error bound;
or else we can analyze the error bound obtained in the limit (in the spirit of [Bose et al.
2003]). In both cases, the following holds for the best error bound ∆:

∆(f) ≤ A
k∆(f) + k + F

res(k)
1

m

and so ∆(f) ≤ A
k + F

res(k)
1

m−Ak
.

We have shown that for any stream u1...p,

δi(u1...p) ≤

⌊
A

k + F
res(k)
1

m−Ak

⌋
∀i

We show that this implies the guarantee

δi(u1...p) ≤

⌊
A

F
res(k)
1

m− 2Ak

⌋
∀i

Case 1: AF
res(k)
1 < m− 2Ak. In this case both guarantees are identical: all errors are 0.

Case 2: AF
res(k)
1 ≥ m− 2Ak:

A2kF
res(k)
1 ≥ Ak(m− 2Ak)

A(m−Ak)F res(k)
1 ≥ A(m− 2Ak)

(
k + F

res(k)
1

)
A

F
res(k)
1

m− 2Ak
≥ A

k + F
res(k)
1

m−Ak

4. SPECIFIC PROOFS

Given our new understanding of bounds which apply to all counter-based algorithms, we
are now able to give tighter bounds which are specific to some of the most popular ex-
amples of the class. That is, we provide tighter k-tail guarantee proofs tailored for the
FREQUENT and SPACESAVING algorithms. Specifically, we show that these algorithms,
when executed with m counters, recover all element frequencies with an error of at most
F

res(k)
1 /(m− k), for any k < m. This corresponds to the tail guarantee with A = B = 1.

4.1 Tail guarantee with constants A = B = 1 for FREQUENT

We can interpret the FREQUENT algorithm in the following way: each element in the
stream results in incrementing one counter; in addition, some number of elements (call
this number d) also result in decrementing m + 1 counters (we can think of the d elements
incrementing and later decrementing their own counter). The sum of the counters at the
end of the algorithm is ‖c‖1. We have

‖c‖1 = ‖f‖1 − d(m + 1)
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

14 · Berinde, Cormode, Indyk, Strauss

Since there were d decrement operations, and each operation decreases any given counter
by at most one, it holds that the final counter value for any element is at least fi − d. We
restrict our attention to the k most frequent elements. Then

‖c‖1 = ‖f‖1 − d(m + 1) ≥
k∑

i=1

(fi − d)

‖f‖1 − d(m + 1) ≥ −dk +
k∑

i=1

fi

n∑
i=k+1

fi ≥ d(m + 1− k)

d ≤ F
res(k)
1

m + 1− k

Since the error in any counter is at most d, this implies the k-tail guarantee with A = B =
1.

4.2 Tail guarantee with constants A = B = 1 for SPACESAVING

The tail guarantee follows as a result of the following claims proven in [Metwally et al.
2005]:

LEMMA 3 IN [METWALLY ET AL. 2005]: If the minimum non-zero counter value is ∆,
then δi ≤ ∆ for all i.

THEOREM 2 IN [METWALLY ET AL. 2005]: Whether or not element i (i.e. i-th most
frequent element) corresponds to the i-th largest counter, the value of this counter is at
least fi, the frequency of i.

If we restrict our attention to the k largest counters, the sum of their values is at least∑k
i=1 fi. Since in this algorithm the sum of the counters is always equal to the length of

the stream, it follows that:

∆ ≤
‖f‖1 −

∑k
i=1 fi

m− k

thus by Lemma 3

δi ≤
F

res(k)
1

m− k
∀i

which is the k-tail guarantee with constants A = B = 1.

5. SPARSE RECOVERIES

The k-sparse recovery problem is to find a representation f ′ so that f ′ has only k non-zero
entries (“k-sparse”), and the Lp norm ‖f − f ′‖p = (

∑n
i=1 |fi − f ′i |p)1/p is minimized. A

natural approach is to build f ′ from the heavy hitters of f , and indeed we show that this
method gives strong guarantees for frequencies from heavy tolerant counter algorithms.

5.1 k-sparse recovery

To get a k-sparse recovery, we run counter algorithm that provides a k-tail guarantee with
m counters and create f ′ using the k largest counters. These are not necessarily the k most
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 15

frequent elements (with indices 1 to k in our notation), but we show that they must be
“close enough”.

THEOREM 6. If we run a counter algorithm which provides a k-tail guarantee with
constants (A,B) using m = k(3A

ε + B) counters and retain the top k counter values into
the k-sparse vector f ′, then for any p ≥ 1 :

‖f − f ′‖p ≤
εF

res(k)
1

k1−1/p
+ (F res(k)

p)1/p

PROOF. Let K = {1, . . . , k} be the set of the k most frequent elements. Let S be the
set of elements with the k largest counters. Let R = {1, . . . , n} \ (S ∪K) be the set of all
other remaining elements. Let k′ = |K \ S| = |S \K|.

Let x1 . . . xk′ be the k′ elements in S\K, with cx1 ≥ cx2 ≥ . . . ≥ cxk′ . Let y1 . . . yk′ be
the k′ elements in K \S, with cy1 ≥ cy2 ≥ . . . ≥ cyk′ . Notice that cxi ≥ cyi for any i: cyi

is the ith largest counter in K \S, whereas cxi is the ith largest counter in (K∪S)\(S∩K),
a superset of K \ S. Let ∆ be an upper bound on the counter errors δ. Then for any i

fyi −∆ ≤ cyi ≤ cxi ≤ fxi + ∆ (1)

Hence fyi
≤ fxi

+ 2∆. Let f ′ be the recovered frequency vector (f ′xi
= cxi

and zero
everywhere else). For any p ≥ 1, and using the triangle inequality ‖a+b‖p ≤ ‖a‖p +‖b‖p
on the vector fi restricted to i ∈ R ∪ S and the vector equal to the constant 2∆ restricted
to i ∈ S \K:

‖f − f ′‖p =

∑
i∈S

(ci − fi)p +
∑

i∈R∪K\S

(fi)p

1/p

≤

 k∑
i=1

∆p +
∑

i∈K\S

(fi)p +
∑
i∈R

(fi)p

1/p

≤ k1/p∆ +

 k′∑
i=1

(fyi)
p +

∑
i∈R

(fi)p

1/p

≤ k1/p∆ +

 k′∑
i=1

(fxi +2∆)p +
∑
i∈R

(fi)p

1/p

≤ 3k1/p∆ +

 ∑
i∈R∪S\K

(fi)p

1/p

≤ 3k1/p∆ + (F res(k)
p)1/p

If an algorithm has the tail guarantee with constants (A,B), by using m = k(3A
ε + B)

counters we get

‖f − f ′‖p ≤
εF

res(k)
1

k1−1/p
+ (F res(k)

p)1/p (2)

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

16 · Berinde, Cormode, Indyk, Strauss

Note that (F res(k)
p)1/p is the smallest possible Lp error of any k-sparse recovery of f .

Also, if the algorithm provides one-sided error on the estimated frequencies (as is the case
for FREQUENT and SPACESAVING), it is sufficient to use m = k(2A

ε + B) counters, since
now fyi ≤ fxi + ∆.

5.2 m-sparse recovery

When the counter algorithm uses m counters, it stores approximate values for m elements.
It seems intuitive that by using all m of these counter values, the recovery should be even
better. This turns out not to be true in general. Instead, we show that it is possible to derive
a better result given an algorithm which always underestimates the frequencies (ci ≤ fi).
For example, this is true in the case of FREQUENT.

As described so far, SPACESAVING always overestimates, but can be modified to under-
estimate the frequencies. In particular, the algorithm has the property that error is bounded
by the smallest counter value, i.e. ∆ = min{cj |cj 6= 0}. So setting c′i = max{0, ci −∆}
ensures that c′i ≤ fi. Because fi +∆ ≥ ci ≥ fi, fi− c′i ≤ ∆ and thus c′ satisfies the same
k-tail bounds with A = B = 1 (as per Section 4.2). Note that in practice, slightly im-
proved per-item guarantees follow by storing εi for each non-zero counter ci as the value
of ∆ when i last entered the frequent set, and using ci − εi as the estimated value (as
described in [Metwally et al. 2005]).

THEOREM 7. If we run an underestimating counter algorithm which provides a k-tail
guarantee with constants (A,B) using (Bk + Ak

ε) counters and retain the counter values
into the m-sparse vector f ′, then for any p ≥ 1:

‖f − f ′‖p ≤ (1 + ε)
(ε

k

)1−1/p

F
res(k)
1

PROOF. Set m = k(A
ε + B) in Definition 2 to obtain

‖f − f ′‖p =

(
k∑

i=1

(fi − ci)p +
n∑

i=k+1

(fi − ci)p

)1/p

≤

(
k

εp

kp
(F res(k)

1)p +
n∑

i=k+1

(fi − ci)
εp−1

kp−1
(F res(k)

1)p−1

)1/p

≤
(

εp

kp−1
(F res(k)

1)p +
εp−1

kp−1
(F res(k)

1)p

)1/p

≤ (1 + ε)
(ε

k

)1−1/p

F
res(k)
1

5.3 Estimating F
res(k)
1

Since our algorithms give guarantees in terms of F
res(k)
1 , a natural related problem is to

estimate the value of this quantity.

THEOREM 8. If we run a counter algorithm which provides a k-tail guarantee with
constants (A,B) using (Bk + Ak

ε) counters and retain the largest k counter values as the

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 17

k-sparse vector f ′, then:

F
res(k)
1 (1− ε) ≤ F1 − ‖f ′‖1 ≤ F

res(k)
1 (1 + ε)

PROOF. To show this result, we rely on the definitions and properties of sets S and K
from the proof of Theorem 6. By construction of sets S and K, fxi

≤ fyi
for any i. Using

equation (1) it follows that

fyi −∆ ≤ cxi ≤ fyi + ∆

So the norm of f ′ must be close to the norm of the best k-sparse representative of f , i.e.
(F1 − F

res(k)
1). Summing over each of the k counters yields

F1 − F
res(k)
1 − k∆ ≤ ‖f ′‖1 ≤ F1 − F

res(k)
1 + k∆

F
res(k)
1 − k∆ ≤ F1 − ‖f ′‖1 ≤ F

res(k)
1 + k∆

The result follows when setting m = k(Ak
ε + B) so the upper bound ensures ∆ ≤

ε
kF

res(k)
1 .

6. ZIPFIAN DISTRIBUTIONS

Realistic data can often be approximated with a Zipfian distribution. Prior work has ar-
gued that such distributions fit a wide variety of data, including sizes of cities and word
frequencies in text [Zipf 1949]; citations of papers [Redner 1998]; web page access fre-
quencies [Breslau et al. 1999]. and file transfer size and duration [Bestavros et al. 1999].
A stream of length F1 = N , with n distinct elements, distributed (exactly) according to
the Zipfian distribution with parameter α has frequencies

fi = N
1

iαζ(α)
where ζ(α) =

n∑
i=1

1
iα

The value ζ(α) converges to a small constant when α > 1. Although data rarely obeys
this distribution exactly, our first result requires only that the “tail” of the distribution can
be bounded by a (small constant multiple of) a Zipfian distribution. Note that this requires
that the total frequencies follow this distribution, but the order of items in the stream can be
arbitrary, that is, it is not necessary for the each item to be drawn i.i.d. from the frequency
distribution. We first show that to obtain the weaker heavy hitter guarantee over Zipfian
distributions, considerably less space is needed.

THEOREM 9. Given Zipfian data with parameter α ≥ 1, if a counter algorithm that
provides a k-tail guarantee with constants (A,B) for k =

(
1
ε

)1/α
is used with m =

(A + B)
(

1
ε

)1/α
counters, the counter errors are at most εF1.

PROOF. The k-tail guarantee with constants (A,B) means

∆ = A
F

res(k)
1

m−Bk
≤ A

N

ζ(α)

∑n
i=k+1 i−α

m−Bk

Then
n∑

i=k+1

1
iα
≤
∫ n

k

1
xα

dx =
1

kα−1

∫ n/k

1

1
xα

dx ≤ ζ(α)
kα−1

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

18 · Berinde, Cormode, Indyk, Strauss

∆ ≤ A
ζ(α)
kα−1

N

ζ(α)(m−Bk)
=

N

kα
A

k

m−Bk

by setting k =
(

1
ε

)1/α
, m = (A + B)k,

∆ ≤ N

kα
= εN

A similar result is proved for SPACESAVING in [Metwally et al. 2005] under the stronger
assumption that the frequencies are exactly as defined by the Zipfian distribution.

6.1 Top-k

In this section we analyze the algorithms in the context of the problem of finding top k
elements, when the input is Zipf distributed.

THEOREM 10. Assuming Zipfian data with parameter α > 1, a counter algorithm that
provides a k′-tail guarantee for k′ = Θ

(
k
(

k
α

)1/α
)

can retrieve the top k elements in

correct order using O
(
k
(

k
α

)1/α
)

counters. For Zipfian data with parameter α = 1, an

algorithm with k′-tail guarantee for k′ = Θ(k2 lnn) can retrieve the top k elements in
correct order using O(k2 lnn) counters.

PROOF. To get the top k elements in the correct order we need

∆ <
fk − fk+1

2
.

If we assume that the data follows a Zipfian distribution, then this difference is given by:

fk − fk+1 =
N

ζ(α)

(
1
kα
− 1

(k + 1)α

)
=

N

ζ(α)
(k + 1)α − kα

(k + 1)αkα

<
N

ζ(α)
αkα−1

(k + 1)αkα
=

N

ζ(α)
α

(k + 1)αk

Thus we need error rate

ε =
α

2ζ(α)(k + 1)αk
=
{

Θ(α/k1+α) for α > 1
Θ(1/(k2 lnn)) for α = 1

The result then follows from Theorem 9.

7. EXPERIMENTAL EVALUATION

We have shown that FREQUENT and SPACESAVING provide tail guarantees with A = B =
1. In this section we present experiments which show that (i) these bounds hold in practice;
(ii) the tail guarantee is useful in practical datasets, in that it can provide significantly
tighter bounds that the usual heavy-hitter guarantee; and (iii) the theoretical bounds are in
practice very close to the observed errors, confirming that these bounds cannot be improved
further, and that the constants derived are quite tight.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 19

The method of testing was as follows. Each dataset consists of a stream of integers,
each representing the occurrence of a single element. An exact algorithm which uses large
amounts of memory was used to compute the exact frequencies of all elements. Our imple-
mentations of the algorithms FREQUENT, SPACESAVING, as well as the underestimating
variant of SPACESAVING (described in section 5.2) were performed on the stream. We
tried a variety of choices for the number of counters m, corresponding to 1, 2 and 5 times
10, 100, 1000 and 10,000 – this covers five orders of magnitude, to demonstrate the ef-
fect over a wide range of parameter values. For each run, we record the maximum error
‖c − f‖∞, i.e. the maximum difference between a recovered frequency and the corre-
sponding exact frequency. The recovered frequency of an element is given by the value of
the counter assigned to that element, or is set to 0 if the element is not in the frequent set
maintained by the algorithm. In addition, for the two algorithms that never overestimate
the element frequencies and estimate zero for items not explicitly stored (FREQUENT and
the modified version of SPACESAVING), we also record the square root of the sum of the
squares of all errors (for all items); this is the L2 recovery error ‖c− f‖2 of the m-sparse
approximation c induced by the counters, as discussed in Section 5.2.

Our experiments concentrate on understanding the accuracy of these algorithms with
a given space budget in the light of tail-guarantees. We do not study their time cost or
other parameters; for this comparison, see other experimental studies such as [Cormode
and Hadjieleftheriou 2008; Manerikar and Palpanas 2009].

7.1 Synthetic datasets

For the synthetic datasets, we generated random streams according to the Zipfian distribu-
tion. Such distributions are commonly used to test the behavior of streaming algorithms.
Each generated stream has a length of 50 million items, large enough to dominate the size
of the summaries (ranging from about a kilobyte for m = 100 to about a megabyte for
m = 104. We used the following values for the skew parameter: α = 1.2 (light to moder-
ate skew), α = 1.5, and α = 2 (quite skewed). Note that experiments on real data sets such
as network traffic sizes, degree distributions of power law graphs and so on, have fitted Zip-
fian distributions with parameters in the range 1 to 2.2, consistent with our experimental
parameters. The results are shown in Figure 2.

The left-hand plots shows how the observed errors as m was varied. For a given choice
of m, our prior analysis argues that the error should be bounded by all k-tail guarantees
with k < m. For a given k, the k-tail bound can be represented as the curve y(m) =
F

res(k)
1 /(m− k); all data points with m > k must be under this curve for the bound to be

satisfied. We plot these (data-dependent) curves for a few choices of k showing how each
choice provides the tightest bound over a range of m values.

The right-hand plots show the L2 error of the obtained m-sparse approximation as m
was varied. Theorem 7 establishes that if m = k+k/ε then the L2 norm of the error vector
‖c− f‖2 is bounded by F

res(k)
1 (1 + ε)

√
ε
k . As before, for a given choice of m, the bound

must hold for all k < m. For a given k, we represent this m-sparse recovery bound as the

curve y(m) = F
res(k)
1

(
1 + k

m−k

)√
1

m−k , obtained by substituting ε = k/(m− k) in the
bound above.

The plots in Figure 2 confirm the correctness of our analysis: it is indeed the case that
the worst case error of both algorithms is never greater than the bound given by the curves.
In some cases, the error is less, but not by a great deal and not consistently so, suggesting

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

20 · Berinde, Cormode, Indyk, Strauss

10
0

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 k = 0
 k = 10

 k = 100
 k = 1000

 k = 10000

Counters (m)

M
ax

im
um

 E
rr

or

Zipfian α=1.2

Frequent
SpaceSaving
SpaceSaving (underestimating)

10
0

10
1

10
2

10
3

10
4

10
5

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

 k = 0

 k = 10

 k = 100

 k = 1000

 k = 10000

Counters (m)

L2
 n

or
m

 o
f e

rr
or

Zipfian α=1.2

Frequent
SpaceSaving (underestimating)

(a) Zipfian Distribution with α = 1.2

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 k = 0

 k = 10

 k = 100

 k = 1000

 k = 10000

Counters (m)

M
ax

im
um

 E
rr

or

Zipfian α=1.5

Frequent
SpaceSaving
SpaceSaving (underestimating)

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 k = 0
 k = 10

 k = 100

 k = 1000

 k = 10000

Counters (m)

L2
 n

or
m

 o
f e

rr
or

Zipfian α=1.5

Frequent
SpaceSaving (underestimating)

(b) Zipfian Distribution with α = 1.5

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 k = 0

 k = 4
 k = 10

 k = 100

 k = 1000

Counters (m)

M
ax

im
um

 E
rr

or

Zipfian α=2

Frequent
SpaceSaving
SpaceSaving (underestimating)

10
0

10
1

10
2

10
3

10
4

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 k = 0

 k = 4 k = 10 k = 100 k = 1000

Counters (m)

L2
 n

or
m

 o
f e

rr
or

Zipfian α=2

Frequent
SpaceSaving (underestimating)

(c) Zipfian Distribution with α = 2.0

Fig. 2. Experimental results on synthetic Zipfian data. The curves in the left-hand plots show k-tail guarantees;
the curves in the right-hand plots show m-sparse recovery L2 error bounds established by theorem 7.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 21

that over all possible streams these bounds are quite accurate. The maximum error plots
also demonstrate the power of a tail bound guarantee compared to the simple heavy hitter
(F1) guarantee. Consider the left plot in Figure 2(b). The straight k = 0 line indicates the
worst case F1 guarantee as a function of m. The observed points are significantly below
this on the log-scale plot, and the increase in accuracy grows as m increases. For m = 105,
the benefit is over two orders of magnitude: in other words, the accuracy is over 100 times
better than the simple F1/m guarantee would suggest. This error continues to decrease
towards zero; it reaches zero only when k is large enough to record the frequencies of all
items with non-zero counts. This effect on the maximum error becomes more pronounced
with greater skew (Figure 2(c)), and diminished with lesser skew (Figure 2(a)).

For the right-hand plots in Figure 2, we see a similar effect for the L2 error of the
m-sparse approximations. However, there is a consistent separation between the two al-
gorithms: the SPACESAVING algorithm achieves uniformly better results, by factors ap-
proaching 2. Again, the theoretical bounds are respected, and seem somewhat tight.

7.2 Real datasets

We performed similar experiments using several real datasets; some have been widely used
in similar experiments (see, for example, [Manerikar and Palpanas 2009]).

—The first dataset, Kosarak, contains (anonymized) click-stream dataset of a Hungarian
on-line news portal [FIMI Repository 2008]. The dataset consists of multi-item trans-
actions; we consider every single item in serial order (as in [Manerikar and Palpanas
2009]). The stream contains over 8M items, drawn from a domain of size 41K. The
results are shown in Figure 3(a).

—The Q148 dataset is also identical to one used in [Manerikar and Palpanas 2009]. It was
derived from the KDD Cup 2000 data [Kohavi et al. 2000], provided by Blue Martini.
The stream consists of the attribute number 148 (“Request Processing Time Sum”) from
the clicks dataset. The stream contains 234954 items drawn from a domain of size
approximately 12K. The results are shown in Figure 3(b).

—Webdocs, the last dataset, was built from a spidered collection of web HTML docu-
ments. It is also available at [FIMI Repository 2008]; see [Lucchese et al. 2004] for a
more detailed description. As before, we consider the transaction items in serial order,
obtaining a stream of approximately 300M elements drawn from a domain of over 5M.
Figure 3(c) shows the results.

As before, we see that the tail guarantees tightly bound the observed errors (left-hand
plots). These data sets exhibit moderate skew, so the benefits are not as pronounced as
the most skewed of the synthetic data. Nevertheless, the (data dependent) curves show
that the theoretical benefit is usually a constant factor, and becomes up to an order of
magnitude for m large enough. The data points from the algorithms also show that in most
cases these theoretical bounds are quite tight for this data. The right-hand plots verify that
the m-sparse recovery bounds hold in practice, with the modified SPACESAVING usually
resulting in somewhat better approximations compared to FREQUENT.

Note that for the Kosarak and q148 data sets (Figures 3(a) and 3(b)), we stop before
m = 105, since here the total number of distinct elements is less than m, and hence the
counter algorithms obtain the exact count for each item; i.e., there exist k < m such that
F

res(k)
1 is 0. However, the naive F1 guarantee still predicts a worst case error of the order

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

22 · Berinde, Cormode, Indyk, Strauss

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 k = 0 k = 10 k = 100
 k = 1000

 k = 10000

Counters (m)

M
ax

im
um

 E
rr

or
Kosarak

Frequent
SpaceSaving
SpaceSaving (underestimating)

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

 k = 0

 k = 10

 k = 100

 k = 1000 k = 10000

Counters (m)

L2
 n

or
m

 o
f e

rr
or

Kosarak

Frequent
SpaceSaving (underestimating)

(a) kosarak data set

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

 k = 0

 k = 10
 k = 100

 k = 1000

Counters (m)

M
ax

im
um

 E
rr

or

Q148

Frequent
SpaceSaving
SpaceSaving (underestimating)

10
0

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 k = 0

 k = 10

 k = 100

 k = 1000

Counters (m)

L2
 n

or
m

 o
f e

rr
or

Q148

Frequent
SpaceSaving (underestimating)

(b) q148 data set

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 k = 0 k = 10 k = 100
 k = 1000

 k = 10000

Counters (m)

M
ax

im
um

 E
rr

or

Webdocs

Frequent
SpaceSaving
SpaceSaving (underestimating)

10
0

10
1

10
2

10
3

10
4

10
5

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

 k = 0

 k = 10

 k = 100

 k = 1000

 k = 10000

Counters (m)

L2
 n

or
m

 o
f e

rr
or

Webdocs

Frequent
SpaceSaving (underestimating)

(c) webdocs data set

Fig. 3. Experimental results on real datasets. The curves in the left-hand plots show k-tail guarantees; the curves
in the right-hand plots show m-sparse recovery L2 error bounds established by theorem 7.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 23

Algorithm 3: FREQUENTR(m)
T ← ∅;
foreach (i, w) do

if i ∈ T then ci ← ci + w;
else

T ← T ∪ {i}; ci ← w;
if |T | > m then

cmin = minj∈T cj ;
forall j ∈ T do

cj ← cj − cmin;
if cj = 0 then

T ← T\{j};

Algorithm 4: SPACESAVINGR(m)
T ← ∅;
foreach (i, w) do

if i ∈ T then
ci ← ci + w;

else if |T | < m then
T ← T ∪ {i};
ci ← w;

else
j ← arg minj∈T cj ;
ci ← cj + w;
T ← T ∪ {i}\{j};

Fig. 4. Pseudocode for FREQUENTR and SPACESAVINGR algorithms

of 102 at this point. On the Webdocs data (Figure 3(c)), the data is more uniform: not until
the several hundred largest items have been removed is the tail noticeably smaller than the
overall F1. Nevertheless, for k large enough, the benefits are palpable. The visible disparity
between SPACESAVING and the other two algorithms in this figure for values of m of 100
or less is due to how the algorithms behave when the data set is insufficiently skewed:
SPACESAVING always increments a counter and thus when the top-m items do not amount
to a significant fraction of the whole stream, the m counters will all be approximately
F1/m, whereas in the other algorithms the m counters will be close to 0.

8. EXTENSIONS

8.1 Real-Valued Update Streams

So far, we have considered a model of streams where each stream token indicates an arrival
of an item with (implicit) unit weight. More generally, streams often include a weight for
each arrival: a size in bytes or round-trip time in seconds for Internet packets; a unit price
for transactional data, and so on. When these weights are large, or not necessarily integral,
it is still desirable to solve heavy hitters and related problems on such streams.

In this section, we make the observation that the two counter algorithms FREQUENT and
SPACESAVING naturally extend to streams in which each update includes a positive real
valued weight to apply to the given item. That is, the stream consists of tuples t, The jth
tuple tj is a pair (i, w) representing the arrival of an amount of weight w to be counted
towards element i where w ∈ R+ is a positive real value.

We show how to extend the two algorithms to correctly process such streams. For
SPACESAVING, observe that when processing each new item i, the algorithm identifies
a counter corresponding to i and increments it by 1. We simply change this to increment-
ing the appropriate counter by w to generate an algorithm we denote SPACESAVINGR.
This generalizes SPACESAVING, since when every w is 1, then the two algorithms behave
identically. The pseudocode for SPACESAVINGR is shown in Algorithm 4.

THEOREM 11. Algorithm SPACESAVINGR provides a k-tail guarantees with A =
B = 1 over real-valued non-negative update streams.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

24 · Berinde, Cormode, Indyk, Strauss

PROOF. We first prove the weaker result, that SPACESAVINGR gives a standard heavy
hitters guarantee. This is a generalization of the analysis of [Metwally et al. 2005] to
demonstrate that SPACESAVINGR achieves the basic Heavy Hitters guarantee (Defini-
tion 1).

The following invariant holds by induction over updates:
∑n

j=1 cj =
∑

tj=(i,w) w =∑n
j=1 fj : in other words, the (generalization of) the F1 of the count vector c is equal to

the F1 of the frequencies of items. Also, since there are k counters, the smallest non-zero
counter, ∆ = min1≤j≤n:cj>0 cj , is at most F1/k. The true count of any element i which is
not recorded in the data structure is at most ∆, by induction over the sequence of updates
(it is true initially, and remains true over each operation). This gives us the result that δi,
the error in the estimate of any frequency fi, is at most ∆. Thus, when an uncounted item
is stored in the data structure, we associate it with the current value of ∆, which is always
an overestimate of the true count. Hence, every approximate count is an overestimate.
Suppose we do not store some item i whose true decayed count is above F1/k. Then we
must have overwritten i with another item e when the minimum count was ∆e. But since
our estimate of the count of i at any instant is guaranteed to be an overestimate, this gives a
contradiction, since the true count of i is at least F1/k ≥ ∆ ≥ ∆e; consequently, we would
not have overwritten i. Therefore, we can conclude that the algorithm retains information
about all items with count at least F1/k. The estimated counts are off by at most F1/k, so
we have the heavy hitter guarantee.

Following the same argument as in [Metwally et al. 2005], we also have that the ith
largest counter is at least fi, the ith largest frequency. This gives us the same guarantees
that we had in Section 4.2. Since the argument there did not require that the fis were
integral, it follows by the same steps that δi ≤ F

res(k)
1 .(m − k), i.e. we have the k-tail

guarantee with parameters A = B = 1 for SPACESAVINGR.

Defining FREQUENTR is a little more complex. If the new item i is present in T , then
we can simply increase ci by w; and if there are fewer than m − 1 counters then one can
be allocated to i and set to w. But, if i is not stored, then the next step depends on the size
of cmin, the smallest counter value stored in T . If w ≤ cmin, then all stored counters are
reduced by w. Otherwise, all counters are reduced by cmin, and some counter with zero
count (there must be at least one now) is assigned to i and given count w−cmin. Following
this, items with zero count are removed from T . Equivalently, we can view this as always
adding w onto the corresponding counter ci, but, if the resulting set of “active” counters
exceeds k in quantity, then we subtract the value of the smallest non-zero counter from all
k + 1 non-zero counters, which necessarily leaves at most k non-zero counters remaining.
This algorithm is given in pseudocode by Algorithm 3. We can also show a k-tail guarantee
for this generalized algorithm.

THEOREM 12. Algorithm FREQUENTR provides the k-tail guarantees with A = B =
1 over real-valued non-negative update streams.

PROOF. The fact that FREQUENTR achieves the basic Heavy Hitter guarantee follows
almost immediately, by observing that every subtraction of counter values for a given item
coincides with the same subtraction to m others, and all counter increments correspond to
some w of a particular item. Therefore, by a charging argument, the error in the count of
any item is at most F1/m, since any reduction to any particular cj is charged against the
frequencies of m− 1 other items.
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 25

This algorithm FREQUENTR shares many properties in common with FREQUENT. In
particular, we can adapt the argument of Section 4.1: now, let d denote the sum of all
subtractions made for any arriving item. That is, whenever all k counters are occupied
and they are all reduced by min(w, cmin), we count this quantity min(w, cmin) towards d.
Then we have a relationship between ‖c‖1, the sum of all counters, and ‖f‖1, the sum of
all frequencies, as

‖c‖1 = ‖f‖1 − d(m + 1)

From here, we can follow the same chain of argument given in Section 4.1, since there
is no assumption that the counters or frequencies are integers, and conclude that

d ≤ F
res(k)
1

m− k + 1
.

That is, we have the k-tail guarantee with A = B = 1.

8.2 Merging Multiple Summaries

A consequence of sparse recovery is the fact that multiple summaries of separate streams
can be merged together to create a summary of the union of the streams. More formally,
consider ` streams, defining frequency distributions f (1) . . . f (`) respectively. Given a sum-
mary of each stream produced by the (same) algorithm with m counters, the aim is to con-
struct an accurate summary of f =

∑`
j=1 f (j). For the analysis, we require the following

bound:

LEMMA 13. For any n-dimensional vectors x and y,

|F res(k)
1 (x)− F

res(k)
1 (y)| ≤ ‖x− y‖1

PROOF. Let X denote the set of k largest entries of x, and Y the set of k largest entries
of y. Let π(i) determine any bijection from i ∈ Y \X to π(i) ∈ X\Y . Then

F
res(k)
1 (x)− F

res(k)
1 (y) =

∑
i 6∈X

xi −
∑
i 6∈Y

yi

≤
∑

i∈Y \X

xπ(i) −
∑

i∈X\Y

yi +
∑

i 6∈(X∪Y)

|xi − yi|

=
∑
i 6∈Y

|xi − yi| ≤
∑

i

|xi − yi| ≤ ‖x− y‖1

Interchanging the roles of x and y gives the final result.

We now give the main Theorem in this section:

THEOREM 14. Given summaries of each f (j) produced by a counter algorithm that
provides a k-tail guarantee with constants (A,B), a summary of f can be obtained with a
k-tail guarantee with constants (3A,B + A).

PROOF. We construct a summary by first building a k-sparse vector f ′(j) from the sum-
mary of f (j), with the guarantee of equation (2). By generating a stream corresponding

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

26 · Berinde, Cormode, Indyk, Strauss

to this vector for each stream, and feeding this into the counter algorithm, we obtain a
summary of the distribution f ′ =

∑`
j=1 f ′(j). Now observe that from this we have an

estimated frequency for any item i as ci so that

|ci − fi| ≤ ∆ = ∆f ′ +
∑̀
j=1

∆j

where each ∆j is the error from summarizing f (j) by f ′(j), while ∆f ′ is the error from
summarizing f ′.

Using Lemma 13 lets us place an upper bound on the first component of the error:

∆f ′ ≤
A

m−Bk
F

res(k)
1 (f ′) ≤ A

m−Bk
(F res(k)

1 (f) + ‖f − f ′‖1)

where, by the triangle inequality and the proof of Theorem 6,

‖f − f ′‖1 ≤
∑̀
j=1

‖f (j) − f ′(j)‖1 ≤
∑̀
j=1

(3k∆j + F
res(k)
1 (f (j)))

Since ∆j ≤ AF
res(k)
1 (f (j))/(m−Bk), the total error obeys

∆ ≤ A

m−Bk

F
res(k)
1 (f) +

∑̀
j=1

(3k∆j + 2F
res(k)
1 (f (j)))

We observe that∑̀

j=1

F
res(k)
1 (f (j)) ≤ F

res(k)
1

∑̀
j=1

f (j)

 = F
res(k)
1 (f)

since
∑`

j=1 F
res(k)
1 (f (j)) ≤

∑`
j=1

∑
i 6∈T f (j) for any T such that |T | = k. So

∆ ≤ A

m−Bk

(
3F

res(k)
1 (f) + 3k

A

m−Bk
(F res(k)

1 (f))
)

=
3A

m−Bk

(
1 +

Ak

m−Bk

)
F

res(k)
1 (f))

This can be analyzed as follows:

(m−Bk)2 − (Ak)2 ≤(m−Bk)2

(m−Bk + Ak)(m−Bk −Ak) ≤(m−Bk)2

1 +
Ak

m−Bk
≤ (m−Bk)

m− (A + B)k
3A

m−Bk

(
1 +

Ak

m−Bk

)
≤ 3A

m− (A + B)k

Hence, we have a (3A,A + B) guarantee for the k-tail estimation.

In particular, since the two counter algorithms analyzed have k tail guarantees with
constants (1, 1), their summaries can be merged in this way to obtain k tail summaries
ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

Space-optimal Heavy Hitters with Strong Error Bounds · 27

with constants (3, 2). Equivalently, this means to obtain a desired error ∆, we need to pick
the number of counters m to be at most a constant factor (three) times larger to give the
same bound on merging multiple summaries as for a single summary.

REFERENCES

ARASU, A., BABU, S., AND WIDOM, J. 2003. CQL: A language for continuous queries over streams and rela-
tions. In Proceedings of the 9th DBPL International Confenrence on Data Base and Programming Languages.
1–11.

BERINDE, R., CORMODE, G., INDYK, P., AND STRAUSS, M. 2009. Space-optimal heavy hitters with strong
error bounds. ACM Symposion on Principles of Database Systems.

BERINDE, R., GILBERT, A., INDYK, P., KARLOFF, H., AND STRAUSS, M. 2008. Combining geometry and
combinatorics: a unified approach to sparse signal recovery. In Allerton Conference.

BERINDE, R., INDYK, P., AND RUZIC, M. 2008. Practical near-optimal sparse recovery in the l1 norm. In
Allerton Conference.

BESTAVROS, A., CROVELLA, M., AND TAQQU, T. 1999. Heavy-Tailed Probability Distributions in the World
Wide Web. Birkhäuser, 3–25.

BEYER, K. AND RAMAKRISHNAN, R. 1999. Bottom-up computation of sparse and iceberg cubes. In ACM
SIGMOD International Conference on Management of Data. 359–370.

BONNET, P., GEHRKE, J., AND SESHADRI, P. 2001. Towards sensor database systems. In Proceedings of the
2nd IEEE MDM International Conference on Mobile Data Management. 3–14.

BOSE, P., KRANAKIS, E., MORIN, P., AND TANG, Y. 2003. Bounds for frequency estimation of packet streams.
In Proceedings of the 10th International Colloquium on Structural Information and Communication Complex-
ity. 33–42.

BRESLAU, L., CAO, P., FAN, L., PHILLIPS, G., AND SHENKER, S. 1999. Web caching and Zipf-like distribu-
tions: Evidence and implications. In INFOCOM. 126–134.

CANDÈS, E. J., ROMBERG, J., AND TAO, T. 2006. Stable signal recovery from incomplete and inaccurate
measurements. Communications on Pure and Applied Mathematics 59, 8, 1208–1223.

CHAKRABARTI, A., CORMODE, G., AND MCGREGOR, A. 2007. A near-optimal algorithm for computing the
entropy of a stream. In ACM-SIAM Symposium on Discrete Algorithms.

CHARIKAR, M., CHEN, K., AND FARACH-COLTON, M. 2002. Finding frequent items in data streams. In
Proceedings of the 29th ICALP International Colloqium on Automata, Languages and Programming. 693–
703.

CORMODE, G., GOLAB, L., KORN, F., MCGREGOR, A., SRIVASTAVA, D., AND ZHANG, X. 2009. Estimating
the confidence of conditional functional dependencies. In Proceedings of ACM-SIGMOD.

CORMODE, G. AND HADJIELEFTHERIOU, M. 2008. Finding frequent items in data streams. PVLDB 1, 2,
1530–1541.

CORMODE, G., KORN, F., MUTHUKRISHNAN, S., AND SRIVASTAVA, D. 2003. Finding hierarchical heavy
hitters in data streams. In International Conference on Very Large Data Bases. 464–475.

CORMODE, G. AND MUTHUKRISHNAN, S. 2005. An improved data stream summary: The count-min sketch
and its applications. Journal of Algorithms 55, 1, 58–75.

DEMAINE, E., ORTIZ, A. L., AND MUNRO, J. 2002. Frequency estimation of internet packet streams with
limited space. In Proceedings of the 10th ESA Annual European Symposium on Algorithms. 348–360.

DONOHO, D. L. 2006. Compressed Sensing. IEEE Trans. Info. Theory 52, 4 (Apr.), 1289–1306.
ESTAN, C. AND VARGHESE, G. 2001. New directions in traffic measurement and accounting. In ACM SIG-

COMM Internet Measurement Workshop.
FANG, M., SHIVAKUMAR, N., GARCIA-MOLINA, H., MOTWANI, R., AND ULLMAN, J. 1998. Computing

iceberg queries efficiently. In International Conference on Very Large Data Bases. 299–310.
FIMI Repository 2008. Frequent itemset mining dataset repository, University of Helsinki. Available at
http://fimi.cs.helsinki.fi/data.

GANGULY, S. AND LAKSHMINATH, B. 2006. Estimating entropy over data streams. In Proceedings of European
Symposium on Algorithms (ESA).

GAROFALAKIS, M., GEHRKE, J., AND RASTOGI, R. 2002. Querying and mining data streams: You only get
one look. In Proceedings of ACM-SIGMOD.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

28 · Berinde, Cormode, Indyk, Strauss

GILBERT, A. C., STRAUSS, M. J., TROPP, J. A., AND VERSHYNIN, R. 2007. One sketch for all: fast algorithms
for compressed sensing. In ACM Symposium on Theory of Computing. 237–246.

HAN, J., PEI, J., DONG, G., AND WANG, K. 2001. Efficient computation of iceberg cubes with complex
measures. In ACM SIGMOD International Conference on Management of Data. 1–12.

HERSHBERGER, J., SHRIVASTAVA, N., SURI, S., AND TÓTH, C. D. 2005. Space complexity of hierarchical
heavy hitters in multi-dimensional streams. In ACM Principles of Database Systems. 338–347.

INDYK, P. 2004. Algorithms for dynamic geometric problems over data streams. In ACM Symposium on Theory
of Computing.

INDYK, P. 2007. Sketching, streaming and sublinear-space algorithms. Graduate course notes, available at
http://stellar.mit.edu/S/course/6/fa07/6.895/.

INDYK, P. AND RUZIC, M. 2008. Near-optimal sparse recovery in the l1 norm. In IEEE Conference on Foun-
dations of Computer Science.

KARP, R. M., SHENKER, S., AND PAPADIMITRIOU, C. H. 2003. A simple algorithm for finding frequent
elements in streams and bags. ACM Transactions on Database Systems (TODS) 28, 1, 51–55.

KOHAVI, R., BRODLEY, C., FRASCA, B., MASON, L., AND ZHENG, Z. 2000. KDD-Cup 2000 organizers’
report: Peeling the onion. SIGKDD Explorations 2, 2, 86–98.

LUCCHESE, C., ORLANDO, S., PEREGO, R., AND SILVESTRI, F. 2004. Webdocs: a real-life huge transactional
dataset. In FIMI.

MANERIKAR, N. AND PALPANAS, T. 2009. Frequent items in streaming data: An experimental evaluation of
the state-of-the-art. Data and Knowledge Engineering 68, 4.

MANKU, G. AND MOTWANI, R. 2002. Approximate frequency counts over data streams. In International
Conference on Very Large Data Bases. 346–357.

METWALLY, A., AGRAWAL, D., AND ABBABI, A. 2005. Efficient computation of frequent and top-k elements
in data streams. In International Conference on Database Theory. 398–412.

MISRA, J. AND GRIES, D. 1982. Finding repeated elements. Science of Computer Programming 2, 142–152.
MUTHUKRISHNAN, S. 2005. Data Streams: Algorithms and Applications. Foundations and Trends in Theoret-

ical Computer Science.
REDNER, S. 1998. How popular is your paper? An empirical study of the citation distribution. The European

Physical Journal B, 131–134.
Rice DSP Group. Compressed sensing resources. Available at http://www.dsp.ece.rice.edu/cs.
SHRIVASTAVA, N., BURAGOHAIN, C., AGRAWAL, D., AND SURI, S. 2004. Medians and beyond: new ag-

gregation techniques for sensor networks. In Proceedings of the 2nd International Conference on Embedded
Network Sensor Systems. 239–249.

ZIPF, G. 1949. Human Behavior and The Principle of Least Effort. Addison-Wesley.

ACM Transactions on Database Systems, Vol. V, No. N, Month 20YY.

